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Comparison of Inverse Kinematics Algorithms for Multi-Section Continuum Robots

Abstract

Continuum robots are a unique type of robots that move due to the elastic deformation of their own body. Their flexible design allows them
to bend at any point along their body, thus making them usable in workspaces with complex geometry and many obstacles. Continuum robots
are used in industry for non-destructive testing and in medicine for minimally invasive procedures and examinations. The kinematics of con-
tinuum robots consisting of a single bending section are well known, as is the forward kinematics for multi-section continuum robots. There exist
efficient algorithms for them. However, the problem of inverse kinematics for multi-section continuum robots is still relevant. The complexity of
the inverse kinematics for multi-section continuum robots is quite high due to the nonlinearities of the robots’ motion. The article discusses in de-
tail the modification of the FABRIK algorithm proposed by the authors, as well as a Jacobian-based iterative algorithm. A comparison of inverse
kinematics algorithms for multi-section continuum robots with constant section length is given and the results of the experiment are described.

Keywords: forward kinematics, inverse kinematics, continuum robot, algorithm FABRIK

Acknowledgements: This work was supported by the Russian Foundation for Basic Research no. 20-38-90143 and Russian Federation
Governmental Program ‘Nauka’ no. FFSWW-2020-0014.

For citation:

Kolpashchikov D. Yu., Gerget O. M. Comparison of Inverse Kinematics Algrithms for Multi-Section Continuum Robots, Mekha-
tronica, Avtomatizatsiya, Upravienie, 2021, vol. 22, no.8, pp. 420—424.

DOI: 10.17587/mau.22.420-424
YK 004.896 DOI: 10.17587/mau.22.420-424

A. 0. KonnawwukoB, nHxeHep, dyk1@tpu.ru, O. M. IepreT, a-p TexH. Hayk, npod., gerget@tpu.ru,
HaumoHanbHbIN nccnegoBaTenbCKUi TOMCKUIA MONUTEXHUYECKUIA YHUBEPCUTET

CpaBHeHune anropuTmMoB OOpaTHOW KMHEMAaTUKH
AN MHOrOCEeKUUOHHbLIX HenpepbIBHLIX PO6OTOB*

Henpepoignvie pobombl — YHUKAAbHBIE 6UO0 poOOMO8, KOMOpble CO8epuiaiom OgudlceHue 3a cuem ynpyeou Odepopmauuu
cobcmeenHo20 meaa. Hx eubkas Koncmpykyus noseossem uzeubamscs 6 4000l mouke meaa. JlanHoe npeumyuecmao daem
803MOJICHOCMb UCNOAB3068AMb MAKUX POOOMOE 8 pabouux 004acmaAX CO CAONCHOU 2eomMempueil U MHONICeCMEOM NPenamcmeul.
Kunemamurka nenpepoiéHbix po6omog, cOCmMosumux U3 00HoU ceKyuu uzeuba, 0ocmamo4Ho Xo0poulo u3eecmua, KaKk u npamas
KUHeMamuKa 0458 MHO20CEKUUOHHbIX HenpepbleHblx pobomoe. O0nako 3adaua 00pamHoil KUHEMAMUKU 045 MHO20CEKUUOHHbIX
HenpepbieHblX pooomos éce euje ocmaemcs akmyaavhoi. CaoxucHocms 3a0a4u 06pamHol KUHEMAMUKU 0451 MHO20CEeKUUOHHbIX
HenpepbieHbIX pOOOMO8 A641emcs 0080AbHO 6bICOKOU U3-3a HeAuHelHocmel dguicenus poboma. B cmamove nodpo6ro paccmo-
mpena moduguxkayus areopumma FABRIK, npedaoscennas asmopamu, a makice umepamuehslii aa20pumm, NOCMPOEHHbLU
Ha ocHose pacyema mampuybt Ixkoou. Ilpuseedeno cpasnenue ar2opummos o0pamHOU KUHEMAMUKU O MHO20CEKUUOHHbIX
HenpepbleHbIX pOOOMO8 NOCMOSHHOU OAUHbL U ONUCAHbL Pe3YAbMambl IKCHepUMeHma.

Karueevie caosa: npamas kuHemamuka, o0opamnas KuHemamuxa, Henpepvleroie pooomut, areopumm FABRIK

Introduction They could be presented as hyper-redundant robots
with an infinite number of spherical joints and rigid
links between them, where the length of links tends to
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Continuum robots are flexible manipulators that |
|
i zero [1]. The ability to bend at any point allows con-
|
|
|
|
|
|
|

move due to the elastic deformation of their body.

tinuum robots to: avoid unwanted collisions in a space
with complex geometry and many obstacles; change
the direction of movement using contacts with obstac-

*HccnenoBaHue BBIMOJHEHO TpU (UHAHCOBOW MOAIEPXKKeE
PO®U B pamkax HayuHoro npoekTa Ne 20-38-90143 "AcniupaHThl"
¥ rocygapcrBeHHoro 3aganusa "Hayka" NeFFSWW-2020-0014.
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les; grab objects with their body. This type of robots
is actively used in various fields: industrial robots are
used for machining [2], non-destructive testing and
repairs inside complex devices [3], [4], in work envi-
ronments that are difficult to access and dangerous
for humans, such as outer space [5] or underwater [6];
medical robots are used as endoscopes and surgical
instruments for minimally invasive procedures [7], [8].

Autonomy, real-time motion planning and tra-
jectory optimization of continuum robots are en-
abled due to inverse kinematics algorithms. Today,
a number of approaches are known that solve the
inverse kinematics problem of multi-section contin-
uum robots. The geometric approach is simple and
effective, e.g., a closed-form solution to the inverse
kinematics problem for a multi-section continuum
robot by S. Neppalli et al. [9], who determined the
length between the beginning and the end of the
bending section and thereby determined the bend-
ing angle of the section. However, this method of-
fers a solution only for a certain set of configu-
rations. Thus, a complete enumeration of various
configurations is carried out while searching for a
desired solution.

The inverse kinematics problem can also be solved
through an iterative geometric algorithm of Forward
And Backward Reaching Inverse Kinematics (FAB-
RIK). The authors in [10] proposed a modification of
the FABRIK algorithm for multi-section continuum
robots. The modified FABRIK allows considering
a continuum robot as a traditional robot with rigid
links connected by spherical joints during the forward
reaching stage. Then the shape of the continuum ro-
bot is restored by the forward kinematics algorithms
during the backward reaching stage. This approach is
applicable for both serial [10] and telescopic [11] multi-
section continuum robots. This algorithm makes it
possible to speed up calculations and increase the per-
centage of correct solutions of high-order accuracy.

Currently, the Jacobian-based methods are widely
used to solve the inverse kinematics problem. This ap-
proach is successfully applied to various types of multi-
section continuum robots: robots with constant [12]
and variable curvature [13], as well as concentric tube
robots [14]. Among them, Newton’s method is used
to find the solution iteratively. Iterative approaches
based on Jacobian matrices are accurate and capable
of working in real time. However, they suffer from high
computational complexity and singularity. It should be
noted, that testing the algorithm for continuum robots
with a large number of bending sections has been of
little interest in literature up until this point.

Forward kinematics

This article investigates the forward kinematics
that is based on a constant curvature approach, where
the bending shape of a continuum robot is treated
as an arc of constant curvature. This approach de-
scribes the bending of a continuum robot with suf-
ficient accuracy and was verified experimentally
[15]. A multi-section continuum robot is defined as
a series of curves smoothly flowing into one another.
The forward kinematics of a spatial continuum robot
is described through transformation matrices:

0
T, =T, 1_[1[TZ((Pi)TB(ei)]a M
ie
where T, — robot’s base frame, Tz(¢) — rotation
around Z axis by the rotation angle ¢, Tg(0) —
translation along X and Z axes at the distance
depending on the bending angle 6 and rotation
around the Y axis by the bending angle 6, Q —
number of bending sections. The transformation
matrix Tg(0) is calculated as:

cos(6) 0 sin(6) S(1—cos(6))/6
o= O 0 )
—sin(0) 0 cos(0) S'sin(0)/6
0 0 0 1

where § — bending section length.

FABRIK-based inverse kinematics

The FABRIK algorithm was originally developed
to solve the inverse kinematics problem for tradi-
tional robots with a finite number of rigid links and
joints between them. In order to use FABRIK for
multi-section continuum robots, the robot’s bending
sections are represented as virtual rigid links of vari-
able lengths (chords) that connect the start and end
points of each bending section. In the course of solv-
ing, forward kinematics are used to reconstruct arcs
from the virtual links.

The algorithm iteratively finds a set of bending
angles 6 and rotation angles ¢, so that the coordi-
nates of the robot tip P, (a positional component
of Ty) are in the adjacency of the target point 7 at a
distance of no more than the linear tolerance 7L,
and the angle between the orientation vector of the
last section Z, (Z axis of Ty) and the target orienta-
tion vector Z, of no more than the angular tolerance
TA. In addition to the target point ¢ and the target
orientation Z,, the algorithm requires:

1) bending section length S;

2) bending angle limit 0,,,,.
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The algorithm searches for a solution in sever-
al iterations. Each iteration includes forward and
backward reaching stages. An example of how the
algorithm works is shown in Fig. 1.

In the forward reaching stage, the search for a solu-
tion is carried out for a robot with rigid links repre-
sented as chords with some constant length under no
restrictions on the angle of rotation between the chords.
At the first step of the forward reaching, the end point
Py is set to the target point # and then the chain points
are redefined starting from the point P,_; and ending
with the point P; in accordance with the formulas [16]:

PiF =(1- }"Z)Piljl + 7‘1'1)[3;
M= Hi /(PL - P,
where i € [(Q — 1)...0], superscripts F and B denote
that the obtained point is a result of forward or
backward reaching respectively. The initial points
are the backward reaching points.

In the backward reaching stage, the chain points
are redefined taking into account the changes in-
troduced by the mutual orientation of the chords. In
this stage, the bending (2) and rotation (3) angles of

each section are calculated using the inverse kine-
matics algorithm for a single section:

i—lHi

0, = 2sign(P7 )arccos(—];
' e |Zi*1||Hi| ()

0., = 6max’ ei > 6maxv
! 0 0, <0

F B .
Hi = Pi - Pi—l’
@; = arctan 2(P,~f}, P,.f;),

where Z; is the Z axis of the ith section frame (Z,
is the Z axis of the robot’s base frame), H — chord
connecting the start and end points of the section,

i i max>

©)

Fig. 1. A complete iteration of the algorithm for a two-section
robot (Q = 2).

Note: A — the initial position of the robot, target point and target
orientation; B — the result of the forward reaching; C — the result
of the backward reaching

Fig. 2. Tip adjustment scheme

Omax — Mmaximum bending angle, P,.i — x and
ycomponents of the PiF point in the T, frame.

At the next step, the new position of PiB and
its orientation Z; are determined by the formula (1).
Thus, all points of the robot from the beginning to
the end are redefined. Next, the condition of finding
the robot’s tip in the adjacency of the target point
is checked. If this condition is not met, then the
algorithm performs another iteration. Iterations are
repeated until the robot’s tip reaches the target point.

Upon reaching the target point, the angle between
the target vector Z, and the orientation vector of the
robot’s tip Z, is checked. If the angle is greater than
the angular tolerance 7A, then the tip adjustment is
carried out (fig. 2). To do this the penultimate point of
the robot PQB_1 rotates around the axis Z), = Z,xXZ,
with the rotation center PQB by one third of the angle
AO. AO is the angle between the target vector Z, and
the orientation vector of the robot Z,. The rotation
is performed by one third of the angle AO because
vectors Z, and Z, have different initial points and it
is difficult to predict the robot’s behavior after rotat-
ing by AO. The Z, vector appears closer to the target
orientation vector Z, in the next iteration.

Besides, rotation around the vector Z) is per-
formed once in several iterations for all points of the
robot except for the first and last points to prevent
the robot from getting stuck in a certain position.

Jacobian-based inverse kinematics

Jacobian-based approach is the most common
way to solve the inverse kinematics problem for both
continuum and traditional rigid robots. In this work
we use Newton’s method, where the Jacobian ma-
trix is evaluated at several iterations:
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Xpo1 =X+ (J(Xk)TJ(Xk)+Wsign)_1J(Xk)T(G - F(xy))

where x; and x; ; ; are current and next robot
configuration parameters, J(x;) is the Jacobian matrix
for Ty with the parameters x;, G is the target position
and the difference between the target orientation vector
Z, and the current orientation vector of the robot
Z,, F(xp) is the current position and the difference
between the target orientation vector and the current
orientation vector of the robot depending on the
configuration parameters x;, Wy, is a positive definite
diagonal matrix used to avoid singular configurations.

G is a vector consisting of the coordinates of the
target point and 0, which means that the orientation
vector of the robot must coincide with the target vector:

G=(X,Y, Z 0).
The current position F(x,) is defined by forward

kinematics (1) and the angle between the target and
the current vector by the formula:

P 0,x (X k )
P 0,y (x4)
P 0,z (Xk)
acos(Z;Zy(x;))
The Jacobian matrix J contains the linear veloci-
ties of the robot’s tip Jp and the rate of change of

the angle J between the target orientation vector Z,
and the orientation vector of the robot Z,.

J-= [JP J
Jo
The movement of each section consists of rota-
tion around the Z axis and linear plus rotational
motions that depend on the same bending angle 0
as shown in equation (1). Accordingly, the Jacobian

matrix for the linear velocities of a continuum robot
from Q sections can be obtained as follows:

F(xy) =

Jp=(J; J, Jo);
Ji:(JiZ JIB);
JiZ = Zi—l(PQ - Py);
3 =R, Oy (-,

)

where Rand P are the rotational and positional portions
of the transformation matrix T, the upper stroke denotes
the matrix T,_, after rotation T, (see equation (1)).

The Jacobian matrix for the rate of change of the
angle between the target orientation vector and the
robot’s orientation vector is:

Jo = d¥(xy)s  dF(X;)4
0 dx, dx,

dF(x;)4
dXQ.2 ’

Experiment

The article presents the results of experiments
with three-, five- and ten-section continuum robots.
To do this 10° target points and orientation vectors of
the robot’s tip were defined using forward kinemat-
ics (1) at random values of the bending and rotation
angles of the robot’s sections. As a result, at least one
solution to the inverse kinematics problem was guar-
anteed for each target point and orientation vector.

Sample generation parameters: length of each sec-
tion § = 50 mm, maximum rotation angle ¢., =
360°, maximum bending angle 6,,,, = 180°/Q, where
0O — the number of sections in the robot. Rotation of
all points around Z) occurred once in 25 iterations.
Wien = 0.1 for the Jacobian-based algorithm. The
Jacobian matrix was formed using the built-in MAT-
LAB tools and converted into a function in order to
reduce the calculation time.

When the target points and the vectors were set
as a result of solving the forward kinematics prob-
lem, they were used as an input to the inverse ki-
nematics algorithm. The following limitations were
set for the inverse kinematics algorithm: linear ac-
curacy <1 pm; angular accuracy <1073 radians; al-
gorithm running time <50 ms.

The number of target points and orientations that
were reached within the set limits formed the main
percentage of solutions. An additional percentage of
solutions consisted of solutions with a linear accu-
racy of 1 mm and an angular accuracy of 1 radian.
The additional percentage shows if the results of the
algorithms can improve when a lower accuracy is set.

Results

This section presents the results of the experiment.
The experiment was carried out using MATLAB
2020b on a computer with an Intel Core i7-4790K
4.00 GHz CPU, 16.0 GB of RAM. The results of the
experiment are presented in table.

The function J(x,) for a ten-section robot gener-
ated in MATLAB took 135 MB of hard disk space.
Unfortunately, it was impossible to process a function
of this size either for simplicity or for calculations in
MATLAB due to the lack of RAM. By comparison,
the function J(x,) for a five-section robot calculated
in the same way and simplified took only 0.5 MB
of hard disk space. Since the angular part of the Ja-
cobian matrix Jo was the longest (about 34 million
symbols in the equation), it was decided to reduce
the Jacobian matrix to a positional component. Af-
ter reducing, the function J(x;) took up to 32 MB
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Experiment results

Algorithm Megfrlngp(f::;i“g Solution percentage ite]\r/lai?gns
Main | Additional

Three-section continuum robot

FABRIK 1.9 94.8 96.9 68.2

Jacobian 5.6 94.3 99.1 100.9
Five-section continuum robot

FABRIK 4.7 95.1 97.6 162.3

Jacobian 15.2 84.2 98.0 26.9

Ten-section continuum robot
FABRIK 16.4 90.4 96.8 221.9
Jacobian — — — —

of hard disk space. MATLAB failed to simplify the
reduced function J(x,;) as it again ran out of RAM.
However, MATLAB was capable of calculating the
reduced function J(x,)One iteration of this function
takes around 14 s to run, which exceeds the 50 ms
time limit set for the experiment.

Conclusion

The article presented the algorithms that were
used for solving the inverse kinematics problem for
multi-section continuum robots. It further compared
the modified FABRIK algorithm and the Jacobi-
an-based iterative algorithm. The experiments have
shown that the FABRIK-based algorithm is able to
reach the target point and orientation faster than the
Jacobian-based algorithm with similar stability of
solutions. At the same time, the efficiency of the Ja-
cobian-based algorithm decreased significantly with
an increase in the number of sections: it dropped
from 94.3 % of solutions for a three-section robot
to 84.2 % of solutions for a five-section robot and
failed to solve the problem for a ten-section robot as
it required a supercomputer to process information
of this volume. An additional percentage of solutions
has indicated that an increase in the time limit or
less stringent accuracy requirements can equalize
both algorithms in stability and even make the Jaco-
bian-based algorithm more efficient for robots with
a small number of bending sections. Indicatively, an
additional percentage of solutions for a three-section
robot was 96.9 % for the FABRIK-based algorithm
and 99.1 % for a Jacobian-based algorithm. From the

above, we can conclude that the modified FABRIK
algorithm is more efficient than the inverse kine-
matics algorithm based on the Jacobian matrices for
systems with a large number of bending sections and
high-performance requirements.
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