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Сравнение алгоритмов обратной кинематики
для многосекционных непрерывных роботов*

Abstract
Continuum robots are a unique type of robots that move due to the elastic deformation of their own body. Their flexible design allows them 

to bend at any point along their body, thus making them usable in workspaces with complex geometry and many obstacles. Continuum robots 
are used in industry for non-destructive testing and in medicine for minimally invasive procedures and examinations. The kinematics of con-
tinuum robots consisting of a single bending section are well known, as is the forward kinematics for multi-section continuum robots. There exist 
efficient algorithms for them. However, the problem of inverse kinematics for multi-section continuum robots is still relevant. The complexity of 
the inverse kinematics for multi-section continuum robots is quite high due to the nonlinearities of the robots’ motion. The article discusses in de-
tail the modification of the FABRIK algorithm proposed by the authors, as well as a Jacobian-based iterative algorithm. A comparison of inverse 
kinematics algorithms for multi-section continuum robots with constant section length is given and the results of the experiment are described.

Keywords: forward kinematics, inverse kinematics, continuum robot, algorithm FABRIK

Непрерывные роботы — уникальный вид роботов, которые совершают движение за счет упругой деформации 
собственного тела. Их гибкая конструкция позволяет изгибаться в любой точке тела. Данное преимущество дает 
возможность использовать таких роботов в рабочих областях со сложной геометрией и множеством препятствий. 
Кинематика непрерывных роботов, состоящих из одной секции изгиба, достаточно хорошо известна, как и прямая 
кинематика для многосекционных непрерывных роботов. Однако задача обратной кинематики для многосекционных 
непрерывных роботов все еще остается актуальной. Сложность задачи обратной кинематики для многосекционных 
непрерывных роботов является довольно высокой из-за нелинейностей движения робота. В статье подробно рассмо-
трена модификация алгоритма FABRIK, предложенная авторами, а также итеративный алгоритм, построенный 
на основе расчета матрицы Якоби. Приведено сравнение алгоритмов обратной кинематики для многосекционных 
непрерывных роботов постоянной длины и описаны результаты эксперимента.

Ключевые слова: прямая кинематика, обратная кинематика, непрерывные роботы, алгоритм FABRIK

Introduction

Continuum  robots are flexible manipulators that 
move due to the elastic deformation of their body. 

*Исследование выполнено при финансовой поддержке 
РФФИ в рамках научного проекта № 20-38-90143 "Аспиранты" 
и государственного задания "Наука" №FFSWW-2020-0014.

They could be presented as hyper-redundant robots 
with an infinite number of spherical joints and rigid 
links between them, where the length of links tends to 
zero [1]. The ability to bend at any point allows con-
tinuum robots to: avoid unwanted collisions in a space 
with complex geometry and many obstacles; change 
the direction of movement using contacts with obstac-
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les; grab objects with their body. This type of robots 
is actively used in various fields: industrial robots are 
 used for machining [2], non-destructive testing and 
repairs inside complex devices [3], [4], in work envi-
ronments that are difficult to access and dangerous 
for humans, such as outer space [5] or underwater [6]; 
medical robots are used as endoscopes and surgical 
instruments for minimally invasive procedures [7], [8].

Autonomy, real-time motion planning and tra-
jectory optimization of continuum r  obots are en-
abled due to inverse kinematics algorithms. Today, 
a number of approaches are known that solve the 
inverse kinematics problem of multi-section contin-
uum robots. The geometric approach is simple and 
effective, e.g., a closed-form solution t o the inverse 
kinema tics problem for a multi-section c ontinuum 
robot by S. Neppalli et al. [9], who determined the 
length between the beginning and the end of the 
bending section  and thereby determined the bend-
ing angle of the section. However, this method of-
fers a solution only for a certain set of configu-
rations  . Thus, a complete enumeration of various 
configurations is carried out while sea  rching for a 
desired solution.

The inverse kinematics problem can also be solved 
through an iterative geometri  c algorithm of Forward 
And Backward Reaching Inverse Kinematics (FAB-
RIK). The authors in [10] proposed a modification of 
the FABRIK algorithm for multi-section continuum 
robots. The modified FABRIK allows considering 
a continuum robot as a traditional robot with rigid 
links connected by spherical joints during the forward 
reaching stage. Then the shape of the continuum ro-
bot is restored by the forward kinematics algorithms 
during the backward reaching stage. This approach is 
applicable for both serial [10] and telescopic [11] multi-
section continuum robots. This algorithm makes it 
possible to speed up calculations and increase the per-
c  entage of correct sol utions of high-order accuracy.

Currently, the Jacobian-based methods are widely 
used to solve the inverse kine matics problem. This ap-
proach is successfully applied to various types of multi-
section continu  um robots: robots with constant [12] 
and variable curvature [13], as well as concentric tube 
robots [14]. Among them, Newton’s method is used 
to find the solution iteratively. Iterative approaches 
based on Jacobian matrices are accurate and capable 
of wor king in real time. However, they suffer from high 
computational complexity and singularity. It sho uld be 
noted, that testing the algorithm for continuum robots 
with a larg e number of bending sections has been of 
little interest in literature up until this point.

Forward kinematics

This article investigates the forward kinematics 
that is based on a constant curvature approach, where 
the be nding shape of a continuum robot is treated 
as an arc of constant curvature. This approach de-
scribes the bending of a continuum robot with suf-
ficient accuracy and was verified experimentally 
[15]. A multi-section continuum robot is defined as 
a series of curves smoothly flowing into one another. 
The forward kinematics of a spatial continuum robot 
is described through transformation matrices:

 
=

= ϕ θ∏0
� �1

[ ) )],( (
Q

Q i i
i

Z BT T T T  (1)

where T0 — robot’s base frame, TZ(ϕ) — rotation 
around Z axis by the rotation angle ϕ, TB(θ) — 
translation along X and Z axes at the distance 
depending on the bending angle θ and rotation 
around the Y axis by the bending angle θ, Q — 
number of bending sections. The transformation 
matrix TB(θ) is calculated as:

( )⎛ θ θ θ θ⎞
⎜ ⎟
⎜ ⎟θ = ⎜ ⎟− θ θ θ θ
⎜ ⎟⎜ ⎟
⎝ ⎠

cos( ) 0 sin( ) 1– cos( ) /

0 1 0 0
( ) ,

sin( ) 0 cos( ) sin( )/ �

0 0 0 1

S

SBT

where S — bending section length.

FABRIK-based inverse kinematics

The FABRIK algorithm was originally developed 
to solve the inverse kinematics problem for tradi-
tional robots with a finite number of rigid links and 
joints between them. In order to use FABRIK for 
multi-section continuum robots, the robot’s bending 
sections are represented as virtual rigid links of vari-
able lengths (chords) that connect the start and end 
points of each bending section. In the course of solv-
ing, forward kinematics are used to reconstruct arcs 
from the virtual links.

The algorithm iteratively finds a set of bending 
angles θ and rotation angles ϕ, so that the coordi-
nates of the robot tip PQ (a positional component 
of TQ) are in the adjacency of the target point t at a 
distance of no more than the linear tolerance TL, 
and the angle between the orientation vector of the 
last section ZQ (Z axis of TQ) and the target orienta-
tion vector Zt of no more than the angular tolerance 
TA. In addition to the target point t and the target 
orientation Zt, the algorithm requires:

1) bending section length S;
2) bending angle limit θmax.
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The algorithm searches for a solution in sever-
al iterations. Each iteration includes forward and 
backward reaching stages. An example of how the 
algorithm works is shown in Fig. 1.

In the forward reaching stage, the search for a solu-
tion is carried out for a robot with rigid links  repre-
sented as chords with some constant length under no 
restrictions on the angle of rotation between the chords. 
At the first step of the forward reaching, the end point 
PQ is set to the target point t and then the chain points 
are redefined starting from the point PQ–1 and ending 
with the point P1 in accordance with the formulas [16]:

 +

+ +
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where i ∈ [(Q – 1)...0], superscripts F and B denote 
that the obtained point is a result of forward or 
backward reaching respectively. The initial points 
are the backward reaching points.

In the backward reaching stage, the chain points 
are redefined taking into account the changes in-
troduced by the mutual orientation of the chords. In 
this stage, the bending (2) and rotation (3) angles of 
each section are calculated using the inverse kine-
matics algorithm for a single section:
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where Zi is the Z axis of the ith section frame (Z0 
is the Z axis of the robot’s base frame), H — chord 
connecting the start and end points of the section, 

θmax — maximum bending angle, ,
F

i xP  — x and 
ycomponents of the F

iP  point in the Ti frame.
At the next step, the new position of B

iP  and 
its orientation Zi are determined by the formula (1). 
Thus, all points of the robot from the beginning to 
the end are redefined. Next, the condition of finding 
the robot’s tip in the adjacency of the target point 
is checked. If this condition is not met, then the 
algorithm performs another iteration. Iterations are 
repeated until the robot’s tip reaches the target point.

Upon reaching the target point, the angle between 
the target vector Zt and the orientation vector of the 
robot’s tip ZQ is checked. If the angle is greater than 
the angular tolerance TA, then the tip adjustment is 
carried out (fig. 2). To do this the penultimate point of 
the robot –1

B
QP  rotates around the axis ′ =t t QЅZ Z Z  

with the rotation center B
QP  by one third of the angle 

ΔO. ΔO  is the angle between the target vector Zt and 
the orientation vector of the robot ZQ. The rotation 
is performed by one third of the angle ΔO because 
vectors Zt and ZQ have different initial points and it 
is difficult to predict the robot’s behavior after rotat-
ing by ΔO. The ZQ vector appears closer to the target 
orientation vector Zt in the next iteration.

Besides, rotation around the vector ′tZ  is per-
formed once in several iterations for all points of the 
robot except for the first and last points to prevent 
the robot from getting stuck in a certain position.

Jacobian-based inverse kinematics

Jacobian-based approach is the most common 
way to solve the inverse kinematics problem for both 
continuum and traditional rigid robots. In this work 
we use Newton’s method, where the Jacobian ma-
trix is evaluated at several iterations:

Fig. 1. A complete iteration of the algorithm for a two-section 
robot (Q = 2). 
Note: A — the initial position of the robot, target point and target 
orientation; B — the result of the forward reaching; C — the result 
of the backward reaching

Fi g. 2. Tip adjustment scheme
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where xk and xk + 1 are current and next robot 
configuration parameters, J(xk) is the Jacobian matrix 
for TQ with the parameters xk, G is the target position 
and the difference between the target orientation vector 
Zt and the current orientation vector of the robot 
ZQ, F(xk) is the current position and the difference 
between the target orientation vector and the current 
orientation vector of the robot depending on the 
configuration parameters xk, Wsign is a positive definite 
diagonal matrix used to avoid singular configurations.

G is a vector consisting of the coordinates of the 
target point and 0, which means that the orientation 
vector of the robot must coincide with the target vector:

 = т0( .)t t tX Y ZG

The current position F(xk) is defined by forward 
kinematics (1) and the angle between the target and 
the current vector by the formula:
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The Jacobian matrix J contains the linear veloci-
ties of the robot’s tip JP and the rate of change of 
the angle JZ between the target orientation vector Zt 
and the orientation vector of the robot ZQ.
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The movement of each section consists of rota-
tion around the Z axis and linear plus rotational 
motions that depend on the same bending angle θ 
as shown in equation (1). Accordingly, the Jacobian 
matrix for the linear velocities of a continuum robot 
from Q sections can be obtained as follows:
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where R and P are the rotational and positional portions 
of the transformation matrix T, the upper stroke denotes 
the matrix Ti–1 after rotation TZ (see equation (1)).

The Jacobian matrix for the rate of change of the 
angle between the target orientation vector and the 
robot’s orientation vector is:
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Experiment

The article presents the results of experiments 
with three-, five- and ten-section continuum robots. 
To do this 106 target points and orientation vectors of 
the robot’s tip were defined using forward kinemat-
ics (1) at random values of the bending and rotation 
angles of the robot’s sections. As a result, at least one 
solution to the inverse kinematics problem was guar-
anteed for each target point and orientation vector.

Sample generation parameters: length of each sec-
tion S = 50 mm, maximum rotation angle ϕmax = 
360°, maximum bending angle θmax = 180°/Q, where 
Q — the number of sections in the robot. Rotation of 
all points around ′tZ  occurred once in 25 iterations. 
Wsign = 0.1 for the Jacobian-based algorithm. The 
Jacobian matrix was formed using the built-in MAT-
LAB tools and converted into a function in order to 
reduce the calculation time.

When the target points and the vectors were set 
as a result of solving the forward kinematics prob-
lem, they were used as an input to the inverse ki-
nematics algorithm. The following limitations were 
set for the inverse kinematics algorithm: linear ac-
curacy <1 μm; angular accuracy <10–3 radians; al-
gorithm runni ng time <50 ms.

The number of target points and orientations that 
were reached within the set limits formed the main 
percentage of solutions. An additional percentage of 
solutions consisted of solutions with a linear accu-
racy of 1 mm and an angular accuracy of 1 radian. 
The additi onal percentage shows if the results of the 
algorithms can improve when a lower accuracy is set.

Results

This section presents th e results of the experiment. 
The experiment was carried out using MATLAB 
2020b on a computer with an Intel Core i7-4790K 
4.00 GHz CPU, 16.0 GB of RAM. The results of the 
experiment are presented in table.

The function J(xk) for a ten-section robot gener-
ated in MATLAB took 135 MB of hard disk space. 
Unfortunately, it was impossible to process a function 
of this size either for simplicity or for calculations in 
MATLAB due to the lack of RAM. By comparison, 
the function J(xk) for a five-section robot calculated 
in the same way and simplified took only 0.5 MB 
of hard disk space. Since the angular part of the Ja-
cobian matrix JO was the longest (about 34 million 
symbols in the equation), it was decided to reduce 
the Jacobian matrix to a positional component. Af-
ter reducing, the function J(xk) took up to 32 MB 



424 Мехатроника, автоматизация, управление, Том 22, № 8, 2021

of hard disk space. MATLAB failed to simplify the 
reduced function J(xk) as it again ran out of RAM. 
However, MATLAB was capable of calculating the 
reduced function J(xk)One iteration of this function 
takes around 14 s to run, which exceeds the 50 ms 
time limit set for the experiment.

Conclusion

The article presented the algorithms that were 
used for solving the inverse kinematics problem for 
multi-section continuum robots. It further compared 
the modified FABRIK algorithm and the Jacobi-
an-based iterative algorithm. The experiments have 
shown that the FABRIK-based algorithm is able to 
reach the target point and orientation faster than the 
Jacobian-based algorithm with similar stability of 
solutions. At the same time, the efficiency of the Ja-
cobian-based algorithm decreased significantly with 
an increase in the number of sections: it dropped 
from 94.3 % of solutions for a three-section robot 
to 84.2 % of solutions for a five-section robot and 
failed to solve the problem for a ten-section robot as 
it required a supercomputer to process information 
of this volume. An additional percentage of solutions 
has indicated that an increase in the time limit or 
less stringent accuracy requirements can equalize 
both algorithms in stability and even make the Jaco-
bian-based algorithm more efficient for robots with 
a small number of bending sections. Indicatively, an 
additional percentage of solutions for a three-section 
robot was 96.9 % for the FABRIK-based algorithm 
and 99.1 % for a Jacobian-based algorithm. From the 

above, we can conclude that the modified FABRIK 
algorithm is more efficient than the inverse kine-
matics algorithm based on the Jacobian matrices for 
systems with a large number of bending sections and 
high-performance requirements.
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Experiment results

Algorithm
Mean operating 

time (ms)

Solution percentage
Mean 

iterations
Main Additional

Three-section continuum robot

  FABRIK 1.9 94.8 96. 9 68.2

Jacobian 5.6 94.3 99.1 100.9

Five-section continuum robot

FABRIK 4.7 95.1 97.6 162.3

Jacobian 15.2 84.2 98.0 26.9

Ten-section continuum robot

FABRIK 16.4 90.4 96.8 221.9

Jacobian — — — —


